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SUMMARY

The K&&n-Pohlhausen method is extended primarily to sixth-degree
velocity profiles for determining the characteristics of the compredsible
Iaminar boundary layer over an adiabatic wall in the presence of an axial

● pressure gradient. It is assumed that the Prandtl number is unity and
that the coefficient of viscosity varies linearly with the temperature.
A general approximate solution which permits a rapid determination of

. the boundary-layer characteristics for any given free-stream Mach number
and given velocity distribution at the outer edge of the boundary layer
is obtained. Numerical examples indicate that this solution will in
practice lead to results of satisfactory accuracy, including the critical
Reynolds number for stability. For the special purpose of calculating
the location of the separation point in an adverse pressure gradient, a
short and simple =thod, based on the use of a seventh-degree velocity
profile, is derived. The numerical example given here indicates that
this method should in practice lead to sufficiently accurate results.
For the special case of flow near a forward stagnation point it is shown
that the K&m&-Pohlhausen method with the usual fourth-degree profiles
leads to resulta of adequate accuracy, even for the critical Reynolds
number.

INTRODUCTION

In reference 1 it was concluded that from the viewpoint of both
accuracy and convenience of calculation a suitable method for deter-
miningthe characteristics of a compressible lsminar boundary layer is
that based on an extension of the K&m&-Pohlhausen integral method to.
velocity profiles of’higher degree than the fourth, especially sixth
degree. An ordinary differential equation for general types of flow was

u derived, but only the flow over a flat plate at zero incidence waa



2 NACA TN 2784

P

investigated in detail. The purpose of the present investigation is to
apply explicitly this method to flows with axial pressure gradients.

.

The ordinary differential equation derived in reference 1 is con-
verted here into a convenient nondimensional form, and a general approxi-
mate solution of this equation in closed form is then derived.

.—
By means

of this solution the physically significant-boundary-layercha~acteristics
of-the flow over an insulated wall can be calculated fairly easily and
quickly for any given free-stream Mach numiberand for any given velocity
distribution outside of the boundary layer. For particular accu3?acYin _ .._ _
determination of the separation point in an adverse press~e gradient,
a simple method based on the use of a seventh-degree velocity profile, ●

which, in accordance with a suggestion.of T3mmsn (reference 2)j is ~d~_
.

to satisfy an additional condition at the separation point, is derived.

For illustrative purposes, two simple but basically different types
of flow are treated in detail. In the first example flow with a linearly
diminishing velocity at the outer edge of the boundary layer is con-
sidered. Such a flow is of particular interest here because it repre-
sents the simplest case of an adverse pressure gradient and because the
usual application.ofthe K%n&-Pohlhausen g@hod with fourth-degree
velocity profiles has been known to lead to..highlyinaccurate results
in such cases (cf., e.g., reference 3). The skin friction, velocity
profiles, and critical Reynolds number are Calculated for several Mach
numbers in this case by means of the general solution derived here.
These results are then compared with known series solutions of the
partial differential equations (references 4 and 5) for this case; the
agreement is shown to be satisfactory for practical purposes. This
agreement includes critical Reynolds numbers for laminar-flow stability
and location of the separation point. In connectionwith the latter it
is significant to note that for zero Mach number the K6r&n-Pohlhausen
method with fourth-degree velocity profiles leads to an error of about
30 percent.in predicting the separation point, while the use of a sixth-
degree profile reduces this error to 15 perc~ntj and the special use of
a seventh-degree profile for this (and only this) purpose practically
eliminates the error for all Mach numbers (O to 3) considered numeri-
cally here.

The second example treated is the flow.near a forward stagnation
point. This case is of interest not only because it may represent the
subsonic flow ”overa blunt nose but also because it had already been
found by Schlichting and Ulrich (reference 6) that in such a case no
physically significant values canbe found for the boundary-layer thick-
ness when sixth-degree profiles are use@. It is shown in the present _ ._
investigation that although this is, strictly spe~ingj true, ~ approxi-
mate value for the thickness is nevertheless obtainable. It is also
shown that in this case the usual type of application of the K&mdn-
Pohlhausen method’with fourth-degree velocity profiles leads not only

—
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to real values

.

of the boundary-layer

3

thickness but also to results of
satisfactory accuracy, even for the critical Reynolds number. Conse-

i quently, in such a case fourth-degree profiles may be used with confi-
dence in the accuracy of the results to be obtained.

As in reference 1, it has been assumed that the viscosity coeffi-
cient is directly proportional to the absolute temperature, and that,
following a suggestion of Chapman (references 7 and 8), the constant of

‘proportionality maybe chosen so that :utherland’s relation is exactly
satisfied at the wall. This introduces considerable mathematical sim-
plification and will lead in practice to fairly accurate results at
least for lower Mach numbers (below 5). For the same reasons it has
also been assumed that the Prandtl number is unity, and this may be
viewed as an approximation for air, where the Prandtl number ia more
nearly 0.72.

This work, carried out at the Polytechnic Institute of Brooklyn
Aeronautical Laboratories, was sponsoredby and conducted with the
financial assistance of the National Advisory Committee for Aeronautics.
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SYMBOLS

2coefficient of 7 in velocity profile; also given
by equation (20)

constant “average” value of a2

constant in given velocity distribution ul/%(E)>
equations (27a) and (30a)

factor of proportionality in equation W/V@ = c(T/%)

skin-friction coefficient ((, k/aY)o/(Pm%?/2))

specific heats ,atconstant pressure and at constant
volume, respectively

integrals deffnedby equations (12)

values of Fl, F2, and F3 based on seventh-degree

profiles; given by equations (B2)



constant defining strength of a shock
outside of boundary layer; given by

integrating factor of equation (21)

NACA TN 2784

wave in flow
equation (lge)

constant defined by equations (18a) and (18b)

thermal conductivity of fluid

characteristic U%gth; see equations (13)

characteristic length in stability calculations
(appendix C)

Mach number

pressure

Reynolds number

free-stream Reynolds number (%%+.)

Sutherland’s constant, defined by equation (8); for
air, S = 216° R

absolute temperature

transformation variable definedby equation (10)

velocity components in x- and y-directions, respectively

coordinates parallel and pe~ndicular
respectively

quantities definedby equations (C2)

to surface,

ratio of specific heats (cP/%l); for air, 7 = 1.4

physical boundary-layer thickness in xy-pkne

boundary-layer thickness in xt-plane

..

.

?l=l-~

.
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Subscripts

o

1

a

b

c

s

w

5-

value of X based on seventh-degree profiles and used
only for determining separation point .

coefficient of viscosity

kinematic viscosity (v/p)

dtiensionless distance along

mass density

wall (x/L)

dimensionless variable (/ )t bt

values at wall, for example, To

local values at outer edge of boundary layer; for
example, Ml, Tl, and U1

initial value in region of adverse pressure gradient
(appendix B)

values _diately

values at critical

behind a shock wave at leading edge

point for stability (appendix C)

value based on seventh-degree profiles

values in undisturbed free stream; for example,
~, T., ~d %

A prime (’) denotes at first differentiation with respect to x.
In equation (14) and thereafter in the main text, a prim denotes dif-
ferentiation with respect to ~. In appendix C, it denotes differen-
tiation with respect to y/Z.

BASIC EQUATIONS

Two-Dimensional Compressible Flow

The following equations chtiacterize the steady two-dimensional
compressible flow of a gas in the laminar boundary layer over a surface
of large radius of curvature compared with the boundary-layer thickness:

(1)
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+(W)+$.(PV) = o

P T1
—=—
P1 T

(2)

(3)

(4)

●

t“

Equations (1) and (2) are the momentum and energy equations, respectively.
The equation of continuity is givenby expression (3), while equation (4)
follows from the ideal gas law. In equations (l), (2), and (4) account
has been taken of the well-known implication of Prandtl’s basic boundary- e-
layer assumption that the pressure gradient ap/by across the boundary-
layer thickness is zero. Thus the axial pressure gradient can be con-
sidered as given by the Bernoulli equation *

ap
— = -plulul’
ax

(5)

where the subscript 1 refers to the potential flow over the surface
st,resmlineoutside of the boundary layer. This potential flow is
assumed to be known.

/
For a,Pmndtl number Pcp k of unity and zero heat transfer at the

wall (~/~y = O at y = O) it can be shown, by eliminating pl~ul’

from equations (1) and (2), that

U2
T + CPT”= constant (6)

Equation (6) can be expressed in the following nondimensional form:
.-

T 1+7-1

()

U2—= M121-7
Tl 2 U1
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Thus the energy equation (2) can for this case be replaced by equa-
tion (6a), which gives the temperature explicitly as a simple function
of the velocity. This case of unit Prandtl number and zero heat trans-
fer is the one which will be treated in the present analysis.

It will be assumed here, as in references 1, 7, and 8, that the
viscosity coefficient can be expressed as a linear function of the
temperature in

where C is a
same value of
relation. The

the form

(7)

constant determined so that relation (7) will give the
v at the wall as the Sutherland viscosity-temperature
latter relation is

least below the hypersonic range.
generally assured
Thus

()
To 1/2 1 + (S~Tm)

c
‘~ (To/Tin) •I-(s/%)

where. S is a constant which for air has the value
equation (6a) it follows that the wall temperature

of the free-stream Mach number & will be:

To ()—=’1+ ~j—1Mm2
Tm

to be accurate at

‘ (8)

s = 216° R. From
To as a function

(9)

Hence the constant C will be a function of the Mach number Mm and

the free-streazntemperature Tm.

By integrating equation (1) with respect to y across the boundary-
layer thickness y = O to y = 5 and introducing the Ibrodnitzyn vari-
able t defined by the transformation

(lo)
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the following equation, essentially the K&&n integral momentum equa-
.

tion for compressible laminar boundary layers, can be derived (cf. ref-
erence 1, equation (24)): f

(11)
Here

and 5t, the value of t when y = 5, is the
in the xt-plane,.,while T = t/6t.

Introducing the dimensionlessvariables

boundary-layer

.

.

(lZ!)

thickness

h and ~ definedby

(13)

where L is a characteristic length and Rm = P#~L/Pm iS the free-
stream Reynolds number, equation (11) can be written as

[

,

,1‘ F1l U1’
?V~+2A—

(!

,2
—+ —2

ucoP~Tl F3

+ F1 U~
=2————

PI -< U1 ,1 TmF1
(14)

where the primes henceforth denote differentiationwith respect to ~.
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Velocity P&3files

If a definite form of profile for u/ul as a function of T is

assumed then equation (14) becomes an ordinary differential eq~tion
in l.(~j. In the present analysis, sixth-degree profiles will be
assumed for most cases and will be chosen to satisfy appropriate bound-
ary conditions at the wall and at the outer edge of the boundary layer.
This is in accordance with the results of reference 1, where it was
concluded that, with the possible exceptions of determination of sep-
aration point in an adverse pressure gradient and of calculation of the
boundary layer in the vicinity of a stagnation point, the use of sixth-
degree profiles should for practical purposes lead to sufficiently accu-
rate determination of lsminar-boundary-layer characteristics, including
critical Reynolds ntiber for stability. Sixth-degree profiles have also
been applied recently byWeil (reference 9).

The following boundary conditions, expressed in the xt-plane, will.
be satisfied:

At T=o:

&.o
‘1

At 7=1:

u—= 1
U1

~ (4uJ az@/ul) a3(w =o

dT ‘. &2 = aT3

(15)

It should be noted that the second condition at the wall (T . O) in equa-
tions (15) follows in general from the original partial differential equa-
tion (1) in conjunction with equation (7). The third condition at the
wall follows from differentiation of equation (1) with respect to t, in

conjunction with the condition of zero heat transfer ((~/~). = O) at the
wall. The second and thhd conditions of equations (15), moreover, are
valid only for zero normal velocity at the wall.
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The sixth-degree polynomial satisfying conditions (15) is found

s.—

to be
7

u
()

82
—=21

2
-—T+t32T- (5 + 2a2)T4 + 2(3 + a2)T5 -

U1 5 Haw ’16’

where:

0

2
=-~% ‘To P1m

?2 ———— (17)
2 Um Tm PmTl

Substitution of equation (16) into equations (12) leada to the
following explicit expressions for Flj F2~ and F3 in terms of a2:

@

F1 = 0.1093 + 0.00211a2 - o.000622a22

1

c

F2 = -0.2857 -
7-1

(0.01905a2 - ~~12 o03950 +
(18)

().02116a2 - 0.0M622822)

F3 =2- 0.4000a2 J

By substituting expressions (18) and (17) into equation (14), the latter
becomes an ordinary differential equation of the first order in k(~).

The quantities with subscript 1 may be regarded as given functions

of ~ from the potential flow outside of the boundary layer. From the

relation (1)U22+CPT= Constant, whiqh is valid outside of the boundary ‘.—

layer even across a shock wave; it follows that

;: -1+ (+)%+-$) (19a) -

.
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Moreover, the

11

local Mach number Ml can be expressed by:

(19b)

If there are no shock waves, the flow outside of the boundary layer may
be considered as isentropic, so that the relation

PI

()

T1 1/(7-1)
—=—
Pm Tm

is valid. In the presence of a shock wave,
as isentropic before and behind, though not
case, equation (19c) may be modified to

(19C)

PI

()

T1 l/(y-1)
—=
Pm ‘q

the flow may be considered
across, the wave. In that

where G is a constant given by

()()~ Tb ‘1/(7-1)
G=z T

m

(19d)

(lge)

while ~ and Tb are the values of p and T immediately behind the

wave, and PI and T1 refer to the region behind the wave at the outer

edge of the boundary layer. Relation (19c) can be considered as a special
case of relation (19d)j namely the case of G=l. The ratios ~/Pm snd

Tb~Tm may be considered as known from the given flow outside of the bound-

ary layer.

explicitly, as
By the use of equations (9), (19a), and (19d) the expression (17) for

82 can be written, more

1.U1’
a2.-Tr (Gl+

m

Y-1

[

A4f)l+
2
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GENERAL SOLUTIONS OF EQUATIONS

For a given yotential-flow velocity distribution

Mach number Mm, the differential equation (14) can be

without any basic difficulties by well-known numerical
as Adam’s method or the Runge-Kutta method (cf~, e.g.,

NACATN 2784

.
—

UI)U@(5) and

solved for l.(~)

methods, such
reference 10).

T

Such a straightforwardproced~e may in practice nevertheless be tedious.
A relatively simple general approximate solution of equation (14) will
therefore be derived in this section. This solution will he found to
be sufficiently accurate for most practical purposes. —

General Approximate Solution

The solution to be derived here willbe based on the approximating
assumption that in the expressions for F1 and F2 the quantities a2

and a22 as given by equation (20) may be replaced by constant “average”

2 for the flow.values E2 and a2 This assumption is justifiedby the ●

fact that in expressions (18) for F1 and F2 the a2 terms are rela-—
tively small; hence even large errors in the evaluation of a2 will lead “

to only small errors in the evaluation of Fl and F2.

By replacing a2 and a22 by constant average values 52 and

7 in expressions (18) for F1 and F2, the quantity F1 becomes aa2

constant, while F2 can be written as

‘2 = -0.2857
()

- 1 KM12- 0.0190552 - ~

where K is a constan} given by -..

K= 0.3950 + 0.02~6iT2- o.000622a2

( 18a)

( 18b)

.

.
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By use of the relation

13

To ()—=1+~ - 1 ~12
T1 2

which follows from equation (6a), and by insertion of expression (18a)
for F2, expression (18) for F3, and expression (17) for a2 in the

right side of equation (1~), the latter equation can be written in the
form:

r

{1P1’ + U1’
L’ + 2A — —

(
2+~ 0.08571+ 0.0190Z2) +

P1 U1 ‘1

Equation
order in X.
found that an

I

(%)(.-;);Mq}‘:s%2
(21) is now a linear differential equation of the first
By use of relations (19a), (19b), and (19d) it will be
integrating factor I of equation (21) is:

The solution of equation
or some finite value (in
~ = O is then:

(21)

. HTm

(21) satisfyingthe boundary condition X = O
the case of a stagnation point at ~ = O) at

dwhere T Tm is obtained from equation (lga).
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.
.

For a given velocity distribution ullum(~), the effect of Mach

number ~ is given by the
‘l/Tm

terms in equation (22) and, in the ‘

case of a shockwave at the leading edge, also by the constant G
(cf. equation (19e)). If the flow over a given object is considered,
however, then the Mach number effect will be contained also in the
Unum terms, since the velocity distribution Uljum will thenbe a -.

function of Mach number.

The integral in equation (22) can in practice be evaluated without
difficulty by numerical ~ans such as Simpsonis rule (cf., for example,
refeFence 10). An average value =2 for.:a2 can, in any given case,

be chosenby considering equation (20).

Boundary-Layer Characteristics

Once X(E) has been determined, theboundary-layer characteristics
follow from the equations developed here._Thus. the log-al

coefficient Cf will be:l

() a2
(w aulay)o 1ulT1 ‘~

Cf = .4 fi--F ~ -1/2

/Pmump 2 “w”

The physical boundary-layer thickness in the xy-plane can

skin-friction x_

“

(23)

be determined
from transformation (10), and an explicit expression for it in terms of
A is given in appendix A.

---

The velocity profiles in the xt-plane are given by equation (16).
These can be converted to the physical xy-plane by means of transforma-
tion (10). An explicit expression for y in terms of t is given in
appendix A. The temperature profiles fogow from the velocity profiles ‘-
by means of equation (6a). It shouldbe noted, however, that for most “– “- “’
practical purpoflesit is not actually nec~ssary to determine the profiles
in the xy-plane, Skin friction (cf. equation (23)) and separation point, =

.
‘It is demonstrated subsequently that the flow near a stagnation

point is better represented by a fourth-degree velocity profile than by
a sixth-degree profile. In such a region,the expression for the skin-

()

a2
friction coefficient is altered in that the term 1 - — ia replaced

.

5

(}byl-; “
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for example, can be determined directly from results in the xt-plane,
while stability calculations (cf. appendix C) can be performed without
use of the profiles in the xy-plane.

The equations developed thus far should be adequate for the prac-
tical determination of boundary-layer characteristics in most cases.
There are, however, two important exceptions. These are: (a) The loca-
tion of the separation yoint in an adverse pressure gradient and (b) the
flow in the vicinity of a forwaxd stagnation point. Item (a) is treated
in the immediately succeeding paragraph, while item (b) is investigated
in a later separate section.

Determination of Separation Point

Although the equations thus far developed will usually be found to
lead to sufficiently accurate results for most boundary-layer character-
istics even in flows with adverse pressure gradients, it will be found
that the location of separation points will still be predicted with
appreciable error. This error can be greatly diminished by a simple
modification of the preceding equations.

For the purpose of determining the separation point, velocity pro-
files can be chosen which, in addition to satisfying boundary condi-
tions., satisfy a further boundary condition at the separation point.
The additional boundary condition is obtained by differentiating equa-
tion (1) twice with respect to t, and by then taking values at the wall
at the point where b/& = O. In this manner, with the use of equa-
tion (6a), the condition

[1ayuhll) .0

&4 ~=o
(24)

is obtained.

Condition (24) is strictly valid only at the separation point (where
au/ay = o). Nevertheless, by using this condition for the entire flow,
it seems plausible that the location of the separation point in any given
case could be predicted with improved accuracy, since the value of the
dimenaionleas boundary-layer thickness A may be expectedto be thereby
more accurately determined at the separation point.. This has already
been shown by an example for incompressible flow in reference 2 and will
be further shown by examples (table I) for compressible flow in the present

. analysis.



NACA TN 2784

A seventh-degree polynomial in T satisfying conditions (15) and
(24) can be chosen. By proceeding in the same manner as (previously)
with the sixth-degree profiles, the following solution As for h(~), 7

analogo.psto equation (22), is obtained (a detailed derivation is given
in appendix B):

(25)

The value of y = 1.4 has been used in equation (25). In case the
region of adverse pre8sure gradient follows a region of favorable pres-
sure gradient, and hence starts at some point behind the leading e~ge,
then equation (3) should be modified to equation (B4) in appendix B.
Separation will occur at the point where (see appendix):

,

w) ()1+ ~ - 1 “m2
2

.

(26)

The location of the separation point is th,ysdetermined at the
value of ~ for which equations (25) (or (B4)) and (26) give the
same value of ~. For any given adverse pressure gradi’ent(negative

u1’(~)) and free-stream Mach n~er Mm, the function ks(~) canbe

plotted against g in accordance with both equation (25) (or equa-
tion (B4)) and equation (26) in the (anticipated)vicinity of the
separation point. The point of intersection of these two curves is

theb the separation point.2 It shouldbe emphasized that equation (25) ‘-““

%his point will, according to equations (25) and (26), be inde-
pendent of G; hence one may put G = 1 for this purpose. This does
not imply that the separation point will actually be unaffected by a
shock wave at the leading edge, since the values of U1/um(E) ‘d

.

*ull/u~(5) may still contain the effect of such a wave.
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is. to be used only for determination of separation point. For other

17

purposes, such as determination of skin-friction distribution or of
critical Reynolds number, equation (22) and its related equations are
to be used, even for a region in an adverse pressure gradient, unless
properties close to or at the separation point are sought.

An application of the
a check on the accuracy of
by means of examples based
boundary layer.

general solutions developed here, as well as
results obtained from them, will now be given
on two different types of flow outside of the

FLOW WTTH LINEARIY DIMINISHING VELOCITY

The case

(27a)

where b is a positive constant, is now considered. This represents
the simplest type of adverse pressure gradient. By introducing the
linear change of variables

(28)

equation (14) remains unchanged, except that ~ is replacedby 51

and k, by Xl. Moreover, tillUm now becomes

(2P)

Thus the constant b no longer appears in the equations. Consequentlyj
in this case it is actually necessary to solve equation (14) only for
b = 1, since for eny other value of b it is necessary only to replace ~
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by El and h by Al in the solution obtained for b = 1. The

present example, therefore, will treat the case

.

.
● ✎✎

A constant average value =2 for a2 can be chosen by noting that

in this case a2 will vary from O (at ~ = O) to 5 (at the separation

point, where, according to equation (16), 1 - (a215)= O). Consequently “-
q= 12.5 will

the value =2 = 2.5 may be chosen. Moreowm, the value

be used here. With these values, the approximate solution (22) for the
case represented by equation (27c) without a shock wave (G = 1) at the

.—

leading edge becomes:

.

*

(29a)

where T = 1 - E,. For zero Mach number, that is, Mm = O, equation (aa)

reduces to:

r ._IX = 5.76 (1 - ~)-6”50 - 1 (~b)

The skin friction follows from equationa (23) and (20), while the .
velocity profiles can be obtained, as previ.guslyexplained, by means
of equations (16) and (A2) (appendix A). F~r Mm = 1 and 3, the inte- .
gration in equation (29a) was performed by expanding the integrand in
a series according to the binomial theorem. The results for h(~),
skin friction at the wall~ and velocity profiles are sho~ in fi~res l} ._

.—

2, and 3, respectively, with Mm = O, 1, and 3.
.
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The critical Reynolds number for the stability of the laminar
boundary layer in the presence of small disturbances was calculated
here on the basis of criteria developedby Lin and Lees (references 11
and 12). The method of calculation is outlined in appendix C, and the
results for the critical Reynolds number pmumL/um at the station

g = 0.0496 are given in table II for ~ = O, 1, and 3. By comparing
the results for zero Mach number with those for the critical Reynold$
number (l,500,0@) at the same station for the flow over a flat plate
based on the solutions of reference 8 (see also reference 1), it is
seen that the adverse pressure “gradientis here highly destabilizing.
Moreover, it can also be seen from table.II that higher Mach numbers
greatly destabilize the flow over an adiabatic wall.

As a check on the accuracy of approximate solution (22) to differ-
ential equation (14), equation (14) was solved exactly for this case
for ~ = O and numerical.lyby Adam’s parabolic method (reference 13)
with increments of A~ = 0.01 for ~ # O. The solutions thus obtained

for ~(~) and for the profiles are shown in figures 1 and 3, respec-
tively. The agreement between these solutions and those based on equa-
tion (22) is seen from these figures to be satisfactory for practical
purposes. As a further check, the critical Reynolds nuniberat ~ = 0.0496
was calculated for & = O by using the exact solution of equation (14).

Table 11 indicates satisfactory agreement between this result
((Rm)c = 380,000) and that ((Rm)c = 330,000) based on equation (22).

It is thus indicated that equation (22) is a satisfactory approxi-
mation to an exact solution of differential equation (14). It is also
desirable to check whether an exact solution of equation (14), or
approximation (22), is a satisfactory approximation to an exact solu-
tion of the original partial differential equation (l). This would con-
stitute a check on the practical reliability of the basic mthod used
here, namely the extension of the fi’n-Pohlhausen method to sixth-
degree profiles. Such a check can be made”by comparing the results
obtained by means of equations (14) and (22) with the results of Howarth
(reference 4) for zero Mach number, based on an accurate solution of the
original partial differential equations (1) and (3). Such a comparison
is shown in figures 2 and 3 for skin friction and velocity profiles,
respectively, and in table II for critical Reyuolda number. In all
cases the comparison indicates that the solutions obtained by means of
the equations developed here give sufficiently reliable results for
practical purposes. .

The separation point is determined by equating the right sides of
equations (3) and (26). In the present case the point at which these
right sides are equal was determined by plotting ~fi(g) according to

o
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.

both equations (25) and (26) on the same sheet in the vicinity of
E = 0.14 for ~ = O and 1 and ~ = O.1O for ~ = 3. These are the -

.
vicinities in which, according to figure I.(based on sixth-degree) not
seventh-degree, profiles), separation might be expected to occur.

—
The

separation points determined”by this means for & = 0, 1, and 3 are

shown in table 1, together with the results of Stewartson (reference 5).
The agreement between these two sets of results is seen to be exceP-
tionally good.

For purposes of comparison, the separation point was also deter-
mined by the use of equation (22) and by means of the classical K&m~n-
Pohlhausen method based on fourth-degree profiles, the latter for zero
Mach number only. The results are shown in table I. Although the use
of the sixth-degreeprofile~ (equation (22)) gives a more accurate
location of the separation point than the fourth-degreeprofiles, the
special use of the seventh degree (equations (25) and (26)) for this
purpose gives here virtually the exact values.

It may be asked whether the seventh-, instead of the sixth-degree
velocity profile could be used for determining the other boundary-layer

.

characteristics, in addition to the separation point. Consequently, the
skin friction and velocity profiles for the present case were determined
on the basis of the seventh-degree velocity profile, in conjunction with

. .

equation (14) (cf. appendix B). It was found that the results, even at
a station fairly close to the separation point, did not agree so closely
with Howarth’s solution (reference 4) as those based on the sixth-degree
profile. It is therefore concluded that the seventh-degreeprofile
should be used only as a means of determining the separation point in

—.

regions of adverse pressure gradients and that otherwise (except for
flow near a stagnation point) the equations,developedon the basis of ““-
the sixth-degree velocity profile should be used.

.

FLOW NEARA FORWARD STAGNATION POINT

The case

(30a)

represents physically the flow in the vicinity of a forward stagnation
point, such as over the leading edge of a ?2~unt object in subsonic flow.

.

● ❞✎
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As in the preceding case (equation (27a)) the constant b here can be *

eliminated by means of transformations (26). Hence only the case

need be treated.

(For zero Mach number Mm= O) an exact solution of ordinary differ-

ential equation (14) in the case represented by equation (30b) is of the
form 2.= Constant. This can also be seen from solution (22) for this

case, with Z2 = a2 and ~2 = a22, where according to equation (20)

(with Mm= O, G = 1, and U1’lUm= 1) a2 = -L/2. From equation (22),

in fact, the following cubic in X is obtained:

f(x) = A3 + 37.43L2 - 979.4A + 6433 = O (31)

By plotting f(h) against k, it is found that there are no physi-
cally significant roots of equation (31). Such a result was already
obtained by Schlichting and Ulrich (reference 6). It will be found,

. however, that the curve f(~) against A in the physically significant
region comes relatively close to the X-axis at a point when the curve
has a local maximum value. If the value of 1. at this point is taken
for purposes of an approximation, then

L = 9.481 (32)

Since the approxtition (32) does not appear to be satisfying in
principle, the use of fourth-degree velocity profiles will be inves-
tigated for this case. The fourth-degree polynomial satisfying all the

.
boundary conditions in equations (15) with the exception of the two con-

. ditions involving the third derivative of velocity ~ (u/ul)/&3 = o
.

)
at T = O andat T = 1 is
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u

()

82
—= 2 - — + a2T
U1 3 2-(2+ ’2)’3+ ~+;)+ (33)

With the profile (33), equation (14) remains valid, but the F’s as
defined by equations (12) sre now given explicitly by the following
expressions:

F, = 0.1175 + 0.00212aD - 0.00U441am2 7
-1. c.

F2 = ‘-0.3000-
7-1

().()1667a2- ~

0.01878a2 - 0.O00441a22)

F3=2 - 0.3333a2

c

Ml
(

2 0.4175 +

1

(34)

.

.

.

Expressions (34) replace, in this case, expressions (18) based on sixth-
degree profiles. For the case (30b) with Mm = O, equation (14) leads

to a cubic in k whose physically signific.entroot is now found to be
(cf. also reference 3)

k= 7.052 ~ (35)

To compare the accuracy of solutidn (32), based on sixth-degree
velocity profiles} with that of solution (35)) the skin friction) veloc-
ity profiles, and critical Reynolds number for laminar-flow stability
have been calculated on the basis of both of the solutions. The results
thus obtained, together with a comparison with results of an exact solu-
tion (reference 14) for this case, are shown in tables III and IV and in
figure 4. From these comparisons it is..see~that the solution based on
fourth-degree profiles leads in this case t~ nmre accurate results than
that based on sixth-degree profiles for the-boundary-layer character-
istics considered, including the critical Reynolds number. It may there-
fore be concluded that for a stagnation-flow case represented by equa-
tions (30a) and (30b), a satisfactory solution for practical purposes
can be obtained by means of equations (33))“(34))and (35) based on
fourth-degree velocity profiles.

r-

.. .=
- —

.
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For Mm # O, an approximate solution of equation (14) quite similar

to equation (22) can be obtained for the present case. Using expres-
sions (34) and putting UllUm = ~ in accordance with equation (30b),

the following approximate solution is thus obtained:

where F1 is now given by

the value ~ of X will

m) ●

equation (34). At the leading edge (~ . O)

be, accordingto equation (36),

(1 +

y-2

)
7-1 —
~ MC02‘-1

(0.1333 + 0.016675’2

As a numerical example, the case Mm = 1

+ 2?1)

was calculated

of equations (36) and (36a), assuming E2 = -4.48 and a22 =

(36)

by means

20.1. The

results for k(~), skim friction, and velocity profiles are shown in fig-
ures 5, 6, and 7, together with the results for ~ = O.

CONCLUSIONS

From the foregoing analysis, based on an extension of the K&n&-
Pohlhausen method primarily to sixth-degree velocity profiles for deter-
mining laminar-boumdary-layer characteristics in the compressible flow
over an adiabatic wall in the presence of an axial pressure gradient,
the following main conclusions can be drawn.

.

1. For a given free-stream Mach number and a given velocity distri-
bution outside of the boundary layer, a relatively simple general approxi-
mate solution to the boundary-lafir equations has been derived for a
Prandtl number of unity and for a linear relation between the viscosity
coefficient and the temperature. This solution not only is convenient
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.

to apply but also leads to results which will be sufficiently accurate
for most practical purposes, including determination of critical Reynolds
number. .“

2. For the particular purpose of determining the location of the
separation.point in a region of adverse pressure gradient, a relatively
quick and simple mthod has been given here, based on the use of seventh-
degree velocity profiles. The numerical example indicated that the

—

results thus obtained should in general be quite accurate. —

3. In the syecial case of flow near a forward stagnation point, the .%
K&m6n-Pohlhausen method with fourth-degree-velocityprofiles gives
results of very satisfactory accuracy, even for the critical Reynolds —

number.

4. The numerical examples given here illustrate the destabilizing
influences of an adverse pressure gradient and of a Mach number greater
than zero.

.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., Msy 28, 1951

,

.
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PHYSICAL

Results in the xt-plane

APPENDIX A

BOUItDARY-LAYERTHICKNESS

can be transformed into the physical
xy-plane by means of relation (10). Thus

J’( )
T

y~st = * T/Tl dT (Al)
o

By inserting velocity profile (16) and equations (19a) and (19b) into
expression (6a) for (T/T1), equation (Al) yields:

Y_T Y-1M2-—
~- 2m

::;;?~){’+:k-$~?+
~+Y

()

a2 4 a22 ~
E121—-T+— - $(5 + 2a2)(l - $)-r6 +

E(3+ :)~ ‘j): ~a2(5+ 2ajjT7+

[ ]%(3+a2) -~&-~)(2+~a2 .8+

*[5 + 2s2)2 - 2a2(2+~a2jT9 ~“

;(3 + a2)(5 + 4T10 +

.@+ 24(2 + ;%)+ A, + a2)3T’1 -

2+ $a2)Tz + $-~ + ~ 82)2T1$$(3 + a2)( (A2)
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After bt(~) has been obtained, the point ~,y in the physical plane

corresponding to any given point ~,T in the mathematical plane can be
directly determined by means of equation (A2).

#

The boundary-layer thickness b in the physical plane is the value, . .
of y at which T = 1. Hence, by putting T = 1
following explicit expression is obtained for the
thickness:

●

in equation (A2), the
boundary-layer

(7-1) 2%2

5 2 %( )
—.1+ , m

(
0.3950 + 0.U2116a2 -

bt

()

0.000622./) (A3)

1+~ ;l %21 U12
Ump

●
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APPENDIX B

DETERMINATION OF SEPWTION POINT

A seventh-degree-polynomialvelocity profile satisfying condi-
(24) in addition to conditions (15) is

*

()7 a2
—=. - 1(21+ 10a2)75 + (7+ 3a2)T6 - ~+ a277 (Bl)
U1 k ?T+a2T2-~ ()

where ~ is given by equation (20). With the profile (Bl), the Fts

as defined by equations (12) become (a subscript s is-used for the
present results to distinguish them from the corresponding results based
on sixth-degree profiles):

F
1s

= 0.1156 + o.oo253a2 - o.oo1454a22

7-1
‘2s = -0.@76a2 - 0.3125 - —

2
M12

(
0.4281 +

0.03229a2 -
)

0.00145a22
!1

‘3s = 1.7500 - 0.5000a2
J

t

(B2)

The separation point will be located where ~(%)la]o = 0; i-t

therefore follows from equation (Bl) that laminar-flow separation will
occur at the point where > = 3.5. By USi~

assuming, as in the section entitled “General

expressions (B2) and

Approximate Solutions,”
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that in the expressions for Fls and F~’-the quantities a2 and q22

W, as an approxi~tionj be replaced bY constant values =2 and ~>
.

the following approximate solution As for A(g) of differential equa-

tion (14) (with Fl, F2~ and F3 rep~ce~.by F~~ F29i ~d F3s2

respectively) is obtained:

Since the main oDJec~ 01 equation (B3) is to determine the separa-

tion point, the values of =2 and ~ may for this purpose be chosen .

as those which a2. and a22 would actually have at that point. Hence,

for determining the separation point, the values F2 = 3..5 and ●

a22 = 12.25 are inserted into eqqation (B3). With 7 =

sion.(25) for ~(~) then results.

Since separation occurs where a2 = 3.5 and since

proportional to ~, is given by equation (20), the value
separation occurs will be that given by equation (26) in

1.4, expres-

a23 which is

of h at which
the main text.

Equations (B3) and (25) for AS(E) are valid only under the bound-

ary condition As = O at ~ = O. In case the region of adverse pressure —

gradient starts at some point ~ = ~a other than the leading edge, this

boundary condition must be replacedby the condition ~ = ha at ~ = Ea. ‘–

Solution (25) for ~(~) must then be replaced by the following solution

( )
with =2 = 3.5 and a22 = 12.25 :

(W’28(V*437 ‘ -
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The value of Xa is obtained directly from equation (22) of the main

text. Thus

—— .
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DETERMINATION

APPENDIX C

OF CRITICAL REYNOLDS

In accordance with the procedure outlined by
the critical Reynolds number at a given station x for the stability-

,

mm

Lees in reference 11,

of the laminar boundary layer can be determined in the following manner.
It is required first to determine the value of y/Z such that

[)(1-213 )-&.-l=o
.

where

a= --””1L)-T’~
()Tq

(cl)

.

.

(C2)

the prime here denotes differentiationwith respect to y/Z and Z is a
convenient length.. In the present analysis the quantity bt was chosen

for Z, except in the case of Howarth’s ser~s solution (reference 4) of

the partial differential equations, where the quantity 2(vx/Llm)@ was

chosen for Z.

The
be found
critical
from the

appropriate value of y/1 satisming equation (Cl) must ~u~l-y
graphically by trial. After this value has been determined, the
Reynolds number
expression:

based on 1 and on--localvalues canbe obtained

“
*

.
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()‘2 ~ (C3)

where the subscript c denotes values at the point where equation (Cl)
is satisfied.

For compressible flow it is more convenient to perform calculations
in the xt-plane than in the xy-plane. With 1 = bt, the foregoing rela-

tions canbe expressed directly in the xt-plane by use of the relations:

a -()ar a ‘I a
a(ylz)‘a(y/z)S ‘RX

where T = t/bt. Using a dot (“) to denote

to T, equations (C2) and (C3) become

differentiationwith respect

3

1

.

.

(C4)
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()ul~t—=
v] ~

L --l

The quantity y/5t in terms of T is given by equation

appendix Aj the trial value of T (instead of y/7) must
which satisfies equation (Cl).

NACA TN 2784

.

.

(C5)

(A2) in

now be found

.

.

.

.

.
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TABLEI

3.5

I

.

●

.

SEPARATIONmm CALCUIATEDBYAPPROXCMATEMETROD (EQUATIONS(25) AND (26))

COMF’AREOWITH STEWAR!I%ON’S SOLUTIONAND WITH OTHERCALCULATIONS

E=’-il
E at separationpint for & of -

Method
o 1 3

Methodof equations(25)and (@ 0.122 0.113 0.0768

Stewartson’ssolution(reference5) .I.20 .110 .W7

Methodbased on sixbh-degreeprofile
(equation(22))

.143 .136 .102

Methodbasea on fourth-degreeprofile .156 ----- -----
1

——. — —
L

TABLEII

VALUESOF CRITICALREYNCU.CSNUMBERFOR STAJXUJ3YAS CAUHJIA!LTZl

moM mmoxmm somIoN (mATION (22))OF E~TION (14)

COMPAREDWITH C71’EERSOLUTIONSFOR Z3R0 MACE NUMSER

-2=1
1- 1-E;E=o.04g6
%

Method
(%)c for & of -

0 1 3

Approximatemethod, ()
120xlo31+—

330 x 103
()

sirkh-degreeprofile
(equation(22)) (1.,@p.oti3:;y (2.8;);:.:3+ ~.

Exact qolutionof
equation(14) 3fb ------------------------- ------------------------

Howarth!sseries 290 -------------------------------------------------
solution(reference4)

Flat-plateflow
(reference8)

lyxl ---------------- --—----- ------------------------
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COMPARISON

TABLE III

OF CAI.CULATEDSKIN-FRICTION

[

U1 1—.~,;~.()Uco
COEFFICIENTS —

Method

Fourth-degree profile (equation (35))

Sixth-degree profile (equation (32))

Solution of.Falkner and Skan (reference 14)

2.390

2.5s0

2.468

CALCULATED

TABLE IV

CRITICAL REYNOLDS STABILITY

Method (Rm)c~2

Fourth-degree profile (equation (35)) 210 x 106

Sixth-degree profile (equation (32)) 170

Solution of Falkner and Skan (reference 14) 2ko

.
--

.

.

.

.
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Figure l.- Comparison between approxhnate ~olution (equation (22)) and

exact solution of ordinary differential e uation (equdion (14)).

?CurveB terminate at separation point. ul u.= 1 - ~.
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BASED ON EQ. (22)
—. —

2
HOWARTH’S SOLUTION

1

00 .02 .04 .06 .08 .10 .12 .14 .16

Figure 2.- Skin-friction coefficients obtained by approximate solution

(equation (22)) of ordinary differential equation (equation (14))
com~red with Howar-thts solution for & . 0 (reference 4).
u~um. 1 - &
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Figure 3.- Comparison of velocity profiles obtained from approximate
s“olution(equation (22)) and exact solution of ordinary differential
equation (equation (14)). I@& = 1 - g; E = o.okgs.
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Figure 4.- Comparison of fourth- and sixth-degree velocity profiles
with solution of Falkner and Skan (reference 14). ul/um =~;~=o.
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Figure ~.- Approximate solution (equation (36)) of ordinary differential
equation (equation (14)); fourth-degree velocity profile. ul/um = E.

.

.



42 . . NACA TN 2784

2.4 ‘

2.0

1.6 ‘

\

J 1.2
s!
‘u

*all

.8

1

.4 ‘

.2 .4 .6 .8 1.0

e

Figure 6.- Skin-friction coefficients based on approximate solution
(equqtion (36)) of ordinary diffe~d equation (equation (14));
fourth-degree velocity profile. = E*
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Figure 7.- Velocity profiles based on approximate solution (equation (36))
of ordinary differential equation (e@ation (14)); fourth-degree
velocity profile. ul/um = 5; 5 = o.k.
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